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1. Introduction

Complementarity problems have been applied in many areas such as traffic equi-
librium, solution of the Nash equilibrium, Walrasian equilibrium model and pre-
diction of inter-regional commodity flows, optimization, engineering, etc., which
has advanced the study of complementarity problems, in finite-dimensional space
studies extensively associated with the idea of equilibrium, in the past thirty years.
Given a particular complementarity problem, its solvability is not evident, and so
many existence theorems have been proved (see [1, 2, 4, 9]).

Due to the many applications to study the existence of solutions for nonlinear
complementarity problems, it is very important to study the feasibility of nonlinear
complementarity problems. A feasible but unsolvable nonlinear complementarity
problem can be referred to in the literature [2, 6, 8]. Recently, a variety of concepts
of exceptional families of elements (in short, EFE) for continuous functions were
introduced, and some feasibility and existence theorems for nonlinear complement-
arity problems and variational inequalities were proved by many authors (see, for
example, [3, 10–15] and the references therein).

Very recently, Isac [9] introduced the notion of an (α, β)-exceptional family
of elements for a continuous function, and applied this notion to the study of the
feasibility of nonlinear complementarity problems, which can be considered as
a new kind of EFE concept to the complementarity theory. More precisely, Isac
proved the following results:

THEOREM A [9, Theorem 5.2]. Let (α, β) be a pair of real numbers such that
0 � α < β, and let K ⊂ Rn be a closed pointed convex cone such that K∗ ⊂ K

or K∗ = K. Then, for any continuous function f : Rn → Rn, either problem
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NCP(f,K,Rn) is feasible or there exists an (α, β)-exceptional family of elements
for f with respect to K.

THEOREM B [9, Theorem 6.1]. Let (H, 〈, 〉) be an infinite-demensional Hilbert
space, let K ⊂ H be a closed convex cone such that K∗ ⊆ K, and let f : H → H

be a completely continuous field of the form f (x) = (1/β)x− T (x), where β > 0.
Then, for any real α such that 0 � α < β, either problem NCP(f,K,H) is feas-
ible or there exists an (α, β)-exceptional family of elements in sense of Definition
6.1 for f with respect to K.

At the end of the paper [9], Isac proposed three open problems, and one of them is
whether Theorem A and Theorem B are true without the assumption K∗ ⊆ K.

In this paper, we introduce the new concept of α-EFE and (α, β)-EFE for
continuous functions, and utilize these notions to the study of the feasibility of
nonlinear complementarity problems in Rn and an infinite-dimensional Hilbert
space H without the assumption K∗ ⊆ K.

2. Preliminaries

In this paper, ‖ · ‖ and 〈·, ·〉 denote the norm and inner product of the Hilbert
space H , respectively. Let K be a nonempty closed convex subset of H and f :
H → H be a continuous mapping. The variational inequality problem (in short,
V I (f,K,H)) is to find x∗ ∈ K such that

〈f (x∗), x − x∗〉 � 0, ∀x ∈ K. (2.1)

IfK is a closed pointed convex cone inH , i.e,K satisfies the following conditions:

(i)K +K ⊂ K; (ii) λK ⊆ K, ∀λ ∈ [0,+∞); (iii)K ∩ (−K) = {0},
then the problem (2.1) reduces to the following nonlinear complementarity prob-
lem (in short, NCP(f,K,H)): finding x∗ ∈ K such that

x∗ ∈ K,f (x∗) ∈ K∗, 〈f (x∗), x∗〉 = 0,

where K∗ is the dual cone of K, i.e.,

K∗ = {f ∈ Rn : 〈f, x〉 � 0, ∀x ∈ K}.
REMARK 2.1. In optimal theory and practical problems, K can be commonly
formulated as follows

K = {x ∈ Rn : gi(x) � 0, i = 1, · · · ,m; hj(x) = 0, j = 1, · · · , l},
where gi : Rn → Rn is a continuously differentiable convex function and hj :
Rn → Rn is a affine function, i = 1, 2, · · · ,m; j = 1, 2, · · · , l.
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DEFINITION 2.1. NCP(f,K,H) is said to be feasible if {x ∈ K : f (x) ∈
K∗} �= ∅ and NCP(f,K,H) is called to be strictly feasible if {x ∈ K : f (x) ∈
intK∗} �= ∅, where intA denotes the set of all the interior of A.

Let H be a Hilbert space and K ⊂ H a closed pointed convex cone. Then for
each x ∈ H , the projection PK(x) of x on K is characterized by the properties
below:

(P1) 〈PK(x)− x, y〉 � 0, ∀y ∈ K,
(P2) 〈PK(x)− x, PK(x)〉 = 0.

LEMMA 2.1. [5]. Let  ⊂ Rn be a bounded open set and f :  → Rn be a
continuous mapping. Suppose 0 �∈ f (∂ ), where ∂ denotes the boundary of  .
There then exists an integer deg(f, , 0), satisfying the following properties:

(i) deg(I, , 0) = 1 ⇔ 0 ∈  , where I denotes the identity mapping;
(ii) If deg(f, , 0) �= 0, then f (x) = 0 has a solution in  ;

(iii) If h :  × [0, 1] → Rn is continuous, and for each (x, t) ∈ ∂ × [0, 1],
h(x, t) �= 0, then deg(h(·, t), , 0) does not depend on t .

DEFINITION 2.2 ([9, 12]) Let K be a closed pointed convex cone in Rn. The
sequence {xr}r>0 ⊂ K is called an exceptional family of elements for f with
respect to K, if ‖xr‖ → +∞ as r → ∞ and for each r > 0, there exists tr > 0
such that

f (xr)+ trxr ∈ K∗ and 〈f (xr )+ trxr , xr〉 = 0.

REMARK 2.2 Definition 2.2 is a relatively generalized concept of an exceptional
family of elements and unifies the corresponding definition in [11]. When K =
Rn+, it reduces to Definition 2.1 of Isac and Obuchowska [11], i.e., if ‖xr‖ →
+∞ as r → ∞, and for each r > 0 there exists tr > 0 such that for each
i = 1, 2, · · · , n,

(i) fi(xr ) = −trxri , if xri > 0
(ii) fi(xr ) � 0, if xri = 0.

3. Main Results

We first introduce a new concept of EFE.

DEFINITION 3.1. Let K be a closed pointed convex cone in Rn and α � 0. The
sequence {xr}r>0 ⊂ K is said to be an α-exceptional family of elements for f with
respect to K, if ‖xr‖ → +∞(r → ∞) and for each r > 0, there exists ηr > 0
such that

(i) ηrx
r + f (xr ) ∈ K∗, (ii) 〈ηrxr + f (xr ), (1 + ηr)xr − αPK(f (xr ))〉 = 0.
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REMARK 3.1. If α = 0, then Definition 3.1 reduces to Definition 2.2.

LEMMA 3.1 ([9]) Let K ⊂ Rn be a closed pointed convex cone in Rn and f :
Rn → Rn be a continuous function. Then there exists either a solution for problem
NCP(f,K,Rn) or an exceptional family of elements for f with respect to K.

THEOREM 3.1 Let K ⊂ Rn be a closed pointed convex cone in Rn and f :
Rn → Rn be a continuous function. Then either NCP(f,K,Rn) is feasible, or for
each α � 0, there exists an α-exceptional family of elements with respect to f .

Proof. For any α � 0 and r > 0, let

Br = {x ∈ Rn : ‖x‖ < r}, ∂Br = {x ∈ Rn : ‖xr‖ = r}.
g(x) = αPK(f (x))+ PK [x − f (x)− αPK(f (x))].

Since f and the projection PK are continuous, we know that g : Rn → Rn is
continuous. Define h : Rn × [0, 1] → Rn as follows:

h(x, t) = x − tg(x).
It is easy to see that h : Rn × [0, 1] → Rn is continuous and h(x, 0) = x for each
x ∈ Rn. For each r > 0, 0 ∈ Br and 0 �∈ ∂Br . It follows from (1) of Lemma 2.1
that

deg(h(·, 0), Br, 0) = 1. (3.1)

Suppose that NCP(f,K) is infeasible. We now prove that for each r > 0, there
exist xr ∈ ∂Br and tr ∈ [0, 1] such that 0 = h(xr , tr ). In fact, if there exists some
r > 0 such that

h(xr , tr ) �= 0, ∀xr ∈ ∂Br, tr ∈ [0, 1],
it then follows from (3) of Lemma 2.1 that

deg(h(·, 0), Br , 0) = deg(h(·, 1), Br , 0). (3.2)

From (3.1), (3.2) and (2) of Lemma 2.1, we know that

h(x, 1) = x − g(x) = 0

has a solution in Br . Therefore, there exists x∗ ∈ Br such that

x∗ − αPK(f (x∗))− PK [x∗ − f (x∗)− αPK(f (x∗))] = 0. (3.3)

By the property (P1) of the projection PK , we have

〈x∗ − αPK(f (x∗))− [x∗ − f (x∗)− αPK(f (x∗))], y〉 � 0, ∀y ∈ K,
and so

〈f (x∗), y〉 � 0, ∀y ∈ K. (3.4)
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It follows from (3.3) and (3.4) that x∗ ∈ K and f (x∗) ∈ K∗. Thus, NCP(f,K) is
feasible, which is a contradiction. Therefore, for each r > 0, there exists xr ∈ ∂Br
and tr ∈ [0, 1] such that

xr − tr{αPK(f (xr))+ PK [xr − f (xr )− αPK(f (xr))]} = 0. (3.5)

Since xr �= 0, it follows that tr �= 0. We now prove tr �= 1. If tr = 1, then

xr − αPK(f (xr))− PK [xr − f (xr)− αPK(f (xr ))] = 0. (3.6)

The aforementioned proof shows that (3.6) implies NCP(f,K,Rn) is feasible,
which contradicts our assumption. Thus, tr ∈ (0, 1). In addition, it follows from
(3.5) that

PK [xr − f (xr )− αPK(f (xr))] = 1

tr
xr − αPK(f (xr )). (3.7)

From (3.7), the properties (P1) and (P2) of the projection PK , we have〈
1

tr
xr − αPK(f (xr ))− [xr − f (xr )− αPK(f (xr ))], y

〉
� 0, ∀y ∈ K,

〈
1

tr
xr − αPK(f (xr ))− [xr − f (xr )− αPK(f (xr ))], 1

tr
xr − αPK(f (xr))

〉
= 0,

that is, 〈(
1

tr
− 1

)
xr + f (xr ), y

〉
� 0, ∀y ∈ K, (3.8)

〈(
1

tr
− 1

)
xr + f (xr ), 1

tr
xr − αPK(f (xr))

〉
= 0. (3.9)

Setting ηr = 1
tr

− 1, then ηr > 0, and it follows from (3.8) and (3.9) that

ηrx
r + f (xr) ∈ K∗, (3.10)

〈ηrxr + f (xr ), (1 + ηr)xr − αPK(f (xr ))〉 = 0. (3.11)

Since xr ∈ ∂Br , we have ‖xr‖ = r and ‖xr‖ → +∞ as r → +∞. It is easy to
see that (3.7) implies xr ∈ K. By (3.10), (3.11) and Definition 3.1, we know that
{xr} ⊂ K is an α-exceptional family of elements for f with respect to K. This
completes the proof. �

Combining Lemma 3.1 and Theorem 3.1, we have the following result:

THEOREM 3.2 Let K ⊂ Rn be a closed pointed convex cone in Rn and f :
Rn → Rn be a continuous function. If NCP(f,K,Rn) is feasible but unsolvable,
then there exists an exceptional family of elements for f with respect to K, and
there exists an α > 0 such that there is no α-exceptional family of elements for f
with respect to K.
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EXAMPLE 3.1 [9]. LetK be the nonnegative orthant of Euclidean space (R2, 〈·, ·〉),
i.e., K = R2+,

f (x) =
[ −1

1
1
1

][
x1

x2

]
+

[ −2
1

]
,

where x = (x1, x2)
T ∈ R2, T denotes the transposition. Obviously,NCP(f,K,Rn)

is feasible but unsolvable. For each r > 0, Let xr = (r, 0)T ∈ R2+. We know
{xr}r>0 is an exceptional family of elements for f with respect toK. In fact, letting
tr = r + 2/r for r > 0, then ‖xr‖ → +∞ and

f (xr)+ trxr ∈ K∗, 〈f (xr )+ trxr , xr 〉 = 0.

In the following, we study the case of infinite-dimensional Hilbert space H .

DEFINITION 3.2. Let K be a closed pointed convex cone in H and f : H → H

be continuous with the form of f (x) = 1
β
x − T (x), where β > 0 and T (x) is a

completely continuous function. For each 0 � α < β, the sequence {xr}r>0 ⊂ K

is said to be an (α, β)-exceptional family of elements associated with f , if ‖xr‖ →
+∞ as r → ∞, and for each r > 0, there exists tr > 0 such that

(i) trx
r + βf (xr) ∈ K∗, (ii) 〈trxr + βf (xr), (1 + tr )xr − αPK [T (xr )]〉 = 0.

LEMMA 3.2. Let H be an arbitrary infinite-dimensional Hilbert space,  be a
bounded open subset of H , T :  → H be completely continuous, and 0 �∈
(I − T )(∂ ). Then the Leray-Schauder degrees have the following properties:

(i) deg(I, , 0) = 1 ⇔ 0 ∈  ;
(ii) If deg(I − T , , 0) �= 0, then T x = x has a solution in  ;

(iii) If h : [0, 1]× → E is completely continuous, and for each (t, x) ∈ [0, 1]×
∂ , T (t, x) �= x, then deg(I − T (t, ·), , 0) does not depend on t .

THEOREM 3.3. Let K be a closed pointed convex cone in H . If f : H → H is
continuous with the form of f (x) = 1/βx − T (x), where β > 0, T : H → H is
completely continuous, then either NCP(f,K,H) is feasible, or for each α such
that 0 � α < β, there exists an (α, β)-exceptional family of elements for f with
respect to K.

Proof. For any r > 0, let

Br = {x ∈ H : ‖x‖ < r}, ∂Br = {x ∈ H : ‖x‖ = r},
g(x) = αPK(T (x))+ PK [x − βf (x)− αPK(T (x))].

The complete continuity of T and the continuity of the projection of PK show that
g : H → H is completely continuous. Let h : [0, 1] × H → H be defined as
follows

h(t, x) = tg(x).
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Then h is completely continuous on [0, 1] × H . It is clear that, for each r > 0,
x − h(0, x) = 0 has a solution in Br . From (i) and (ii) of Lemma 3.2 that

deg(I − h(0, ·), Br, 0) �= 0. (3.12)

Suppose that NCP(f,K,H) is infeasible. We can prove that for each r > 0, there
exist xr ∈ ∂Br and tr ∈ [0, 1] such that

xr − h(tr , xr ) = 0.

Indeed, if there exists r > 0 such that

xr − h(tr , xr ) �= 0, ∀xr ∈ ∂Br, tr ∈ [0, 1],
then from Lemma 3.2, we have

deg(I − h(1, ·), Br, 0) = deg(I − h(0, ·), Br, 0) �= 0.

Hence, x − h(1, x) = 0 is solvable in Br , which implies that there exists x∗ ∈ Br
such that

x∗ − αPK(T (x∗))− PK [x∗ − βf (x∗)− αPK(T (x∗))] = 0. (3.13)

Since β > 0, it follows from the property (P1) of the projection PK that

〈f (x∗), y〉 � 0, ∀y ∈ K. (3.14)

By (3.13), we have

x∗ = αPK(T (x
∗))+ PK [x∗ − βf (x∗)− αPK(T (x∗))] ∈ K. (3.15)

It follows from (3.14) and (3.15) that x∗ is a feasible point of NCP(f,K,H). It
contradicts our assumption.

So for each r > 0, there exist xr ∈ ∂Br and tr ∈ [0, 1] such that

xr − tr{αPK(T (xr ))+ PK [xr − βf (xr )− αPK(T (xr))]} = 0.

If tr = 0, then xr = 0. Since xr ∈ ∂Br , we know that ‖xr‖ = r and tr �= 0. If
tr = 1, then

xr − αPK(T (xr))− PK [xr − βf (xr)− αPK(T (xr ))] = 0. (3.16)

Repeating the previous proof, we can prove xr is a feasible point ofNCP(f,K,H),
which is a contradiction. Therefore, tr ∈ (0, 1) and it follows from (3.19) that

PK [xr − βf (xr)− αPK(T (xr ))] = 1

tr
xr − αPK(T (xr )).

By using the characterized properties (P1) and (P2) of the projection PK and
similar proof of Theorem 3.1, we deduce immediately that {xr}r>0 is an (α, β)-
exceptional family of elements for f with respect toK. This completes the proof. �
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